Edexcel Physics A-level Topic 2: Mechanics

Key Points

Scalars and Vectors

Scalar quantities are ones which only have a magnitude:

- Mass
- Time
- Energy
- Work
- Length
- Speed

Vector quantities are ones which have a magnitude and direction:

- Displacement
- Force
- Acceleration
- Velocity
- Momentum

Drawing Vectors

Vectors have both a magnitude and a direction, compared to scalar quantities which only have a magnitude. Vectors can be shown with arrow drawings. If they are drawn to scale then they can be physically measured. If not, calculations must be used.

Vector triangles can be used to determine resultant vectors as shown above. If 3 forces form a closed triangle they are balanced and will have a resultant force of 0 N .

唇PMT

Resolving Vectors

Resolving a vector means splitting it up into its horizontal and vertical components. Because these components meet at right angles they can be calculated using trigonometry. However, they can also be drawn to scale and found using the 'parallelogram method'. The key to resolving vectors is putting the vectors head to tail.

SpMT
 Moments

The moment of a force about a point is the product of the force and the distance from the line of action of the force to the point.
Moment (Nm) =Force (N) \times Perpendicular Distance (m)
Where an object is in equilibrium, the moments on it about a point are balanced. For example, around a car's wheel axle. You can use this to work out forces and distances because:

Total Clockwise Moment = Total Anticlockwise Moment
A couple is a pair of equal and opposite parallel forces that both act on the same body and do not act in the same line.

Moment of a Couple (Nm) = Force (N) x Perpendicular Distance Between Lines of Action (m)

Centre of Mass

The centre of mass is where the mass of an object can be considered to be concentrated. The line of action acts from the centre of mass and shows how gravity is acting upon the object.

The centre of mass can be found by suspending an object by a pin and then using a plum line to draw on the line of actionwhere they cross is the centre of mass.

If the line of action falls outside of the width of the base then the object will topple.

SUVAT and Projectiles

$$
\begin{gathered}
S=\text { Displacement } \\
U=\text { Initial velocity } \\
V=\text { Final velocity } \\
A=\text { Acceleration } \\
T=\text { Time }
\end{gathered}
$$

In projectile motion, the horizontal and the vertical components are treated separately. Acceleration is due to gravity, hence only affects the vertical component and is positive if acting with the object and negative if against it.

Lift, Drag and Terminal Velocity

Friction is a force that opposes the motion of an object.
Drag is a force that opposes motion in a fluid. It usually increases with speed.

Lift is an upward force created on an object as it moves through a fluid due to its shape.

Terminal Velocity happens when frictional forces equal the driving force, causing a resultant force of 0 N and zero acceleration.

Newton's First Law

Newton's first law of motion states that an object will remain in its stationary or moving state, unless acted on by a resultant force. This means:

- If an object is at rest, it will remain at rest unless there is a resultant force acting on it
- If an object is moving at a given velocity, it will continue moving with that same velocity (same speed and in the same direction) unless acted on by a resultant force

Consequently, any time an object starts moving, accelerates, or changes the direction in which is travelling, a resultant force must be acting.

Newton's Second Law

Force $(\mathrm{N})=$ Mass $(\mathrm{kg}) \times$ Acceleration $\left(\mathrm{ms}^{-2}\right)$

- For an object to accelerate, there must be a resultant force acting on it
- The acceleration is directly proportional to the resultant force and inversely proportional to the mass of the object

Terminal Velocity in a falling object:

1. Initially the weight > air resistance, so there is a resultant downwards force and the object accelerates
2. As velocity increases, air resistance increases
3. When air resistance $=$ weight, there is no resultant force and so the object travels at terminal velocity

Newton's Third Law

Newton's third law states that every action has an equal and opposite reaction. This means that if a force is applied to an object, the object will push back with a force that is equal in magnitude, and opposite in direction.

One of the consequences of this is that objects resting on a surface will always have an upwards reaction force to counteract the weight of the object. This explains why the object doesn't simply fall through the surface!

Work, Power and Efficiency

$$
\begin{aligned}
& P=\frac{\Delta W}{\Delta t} \quad P=F V \quad W=F s \cos \theta \\
& \text { Efficiency }=\frac{\text { Useful power output }}{\text { Total power input }} \quad \text { Efficiency }=\frac{\text { Useful energy output }}{\text { Total energy input }}
\end{aligned}
$$

There are many types of energy: gravitational potential, kinetic, chemical, elastic potential, electrical, sound and more. Energy is transferred when a force is applied across a distance, this is known as the work done.

Energy is measured in joules and power is measured in watts, where one watt is equal to one joule per second.

Kinetic Energy

Kinetic energy is a form of energy that all moving objects have. The faster the object is moving, or the heavier the object is, the more kinetic energy it must have. It is defined by the equation:

$$
E_{k}=1 / 2 m v^{2}
$$

This means that if the object's velocity doubles, the kinetic energy it has will quadruple.
When a vehicle brakes to a stop, all the kinetic energy must be transferred to other forms since energy cannot be created or destroyed. Most of the energy is used to do work against friction between the brake discs and pads, and is transferred to heat energy.

Gravitational Potential Energy

When an object is raised to a height, it gains gravitational potential energy. This energy is determined by the gravitational field strength, the mass of the object and the height to which it is raised. It is calculated using the equation:

$$
\text { G.P.E }=m \times g \times h
$$

When an object falls from a height, the gravitational potential energy it has decreases as it falls. Since energy cannot be created or destroyed, this energy is transferred to kinetic energy and work done against resistive forces.

Momentum

All moving objects have momentum, the value of which can be calculated using:

$$
\text { Momentum }\left(\mathrm{kgms}^{-1}\right)=\text { Mass }(\mathrm{kg}) \times \text { Velocity }\left(\mathrm{ms}^{-1}\right)
$$

A closed system is one in which no external forces act. In a closed system the conservation of momentum is always observed. This states that the momentum of the system before an event must be equal to the momentum of the system after the event.

$$
\begin{aligned}
p_{1} & =p_{2} \\
m_{1} v_{1} & =m_{2} v_{2}
\end{aligned}
$$

家PMT Collisions

For all collisions, the conservation of momentum must apply. Whether or not the kinetic energy of the system is conserved depends on the type of collision:

- In elastic collisions, the kinetic energy of the system is conserved and so:

$$
E_{k} \text { final }=E_{k} \text { initial }
$$

- In inelastic collisions, the kinetic energy of the system is not conserved and some kinetic energy is dissipated by being transferred to other forms to work out the quantity of energy transferred to other forms you can compare the initial and final $K E$ values:

$$
\Delta E_{k}=E_{\substack{\text { final } \\ \text { initial }}}-E_{k}
$$

 Impulse

By combining the equations for momentum with Newton's Second Law, we can produce a definition for impulse:

$$
\begin{gathered}
F=m a \\
F=\frac{\Delta(m v)}{\Delta t} \\
\text { Impulse }=F \Delta t=\Delta(m v)
\end{gathered}
$$

Impulse can therefore be described as the change of momentum of an object. It is equal to the area under a Force-Time graph.

Another useful thing that these equations demonstrate is that the force an object experiences is equal to the rate of change of momentum - an idea used in vehicle safety.

